Tiga Konsep Futuristik Dari Nokia: Stretchable Electronic Skin, Nanowire Sensing, Electrotactile Experience

Posted: 30 September 2010 in Nokia, Other Mobile Phones, Sony Ericsson
Tags: , , , ,

nanotech-1Nokia Research Center di Cambridge yang didirikan pada tahun 2007 bekerja sama dengan University of Cambridge, pada tahun 2007 telah memperkenalkan sebuah konsep handphone yang diberi nama Morph Concept.

Pada saat ini, menurut laporan Nokia Conversations, Nokia Research Center memiliki paling tidak tiga buah konsep handphone futuristik yang masing-masing diberi nama Stretchable Electronic Skin, Nanowire Sensing, dan Electrotactile Experience.

Nanowire Sensing

The lowdown: The team involved in this project is effectively working on an artificial nose. By placing a nanowire on top of a chip, they can train it to recognise different substances which are placed close to the sensing surface. This all happens at a nanometer scale, where the current passing through the nanowire is influenced by its immediate surroundings. Place a different substance near it and the current running through the wire will react differently. There’s still a lot of work to do on it, but the team were able to show us the nanowire and its accompanying software (which used a sniffing dog as it’s icon) correctly identify a substance.

The potential application: In the future, this kind of technology could be used to monitor environments and measure a variety of things including air pollution, food-based contaminants or bio-chemical processes. Right now it’s restricted to identifying particular molecules but the long term aim is to enable it to identify complex molecular mixtures – similar to how our own noses work.

Stretchable Electronic Skin

The lowdown: Right now, circuit boards are solid. The team at Cambridge however are working on a technology that’ll enable them to be flexible, creating something akin to “electronic skin”. By using evaporated gold as a conductor, they have created an electronic touchpad which can be stretched like a rubber band, but still respond to touch and pressure. The team has been testing it to stretch by up to 20 per cent of its original length without any drop in performance. The process of creating the material is pretty unique and the results are utterly mind-boggling, when you start to think about the possibilities it offers.

The potential application: This research has at its heart new form factors for devices of the future. The possibilities might sound hard to believe, but working technology which can be twisted and distorted like a rubber band could enable a unique range of wearable devices or even enable technology to feasibly become part of our clothing. After we’d seen it, the talk from the group was of us having completely different ways of us interacting with technology in the future. What is solid and known to us right now, could be flexible and entirely different in the future.

Electrotactile Experience

The lowdown: The third of our demoes was also the most realistic, as it was being shown off on a Nokia N900. The team is working on ways to enable touchscreens to offer more realistic feedback. This goes way beyond simple haptics to deliver genuine tactile response. The team are influenced by the belief that the sensation of touch isn’t currently well understood so they’re trying to work out ways to make it more effective when interacting with technology. Part of the team’s research is looking at ways to try and replicate textures, potentially offering users new experiences when it comes to interacting with a touchscreen. Using the concept of electrovibration, which was first documented in the 1950s, the team have been working on the concept for about a year now but have already made tremendous progress. As part of the project, the team has been working with the electrical engineers at Nokia’s Research Center in Beijing who managed to miniaturise the required hardware to fit into a modified N900 (using a half-size battery).

The potential application: This technology would enable a new level of feedback from touchscreen devices, taking our way of interacting with them to a whole new level. Of course this is just a concept prototype so don’t expect it on your device any time soon. However, given the speed with which the team have reached this phase of research, progress does seem to be pretty rapid.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s